

 Plant your tree of Java Objects.

Table of Contents
Getting Started ... 3

What is it? ... 3

What is the objective? .. 3

When to use? .. 4

How to use .. 6

Your First Code Snippet... 8

Requirement ... 9

Architectural Specification ... 10

Functional Architecture .. 10

Interfaces Scope .. 10

Interface Methods .. 13

Application Architecture ... 13

General Architecture ... 14

Structural Composition ... 16

Behavioral Composition .. 17

Technical Architecture .. 18

Contexts .. 19

Phases ... 23

Element Lifecycle .. 24

Session States .. 25

Specifications & Validations .. 26

API Transformation Process (ATP) .. 28

Getting Started

What is it?
The HappyTree API is an API for Java Object Model

representation in a tree hierarquical structure, which you deal

with Java Objects (Object Model) that generally represent entities

in a problem domain.

A hierarchical structure, in the context of the HappyTree API,

consists of a set of objects of the same type that relate to each

other, either physically or logically, and that these objects have in

this relationship, a tree hierarchical behavior.

In addition, the HappyTree API transforms a linear structure of

objects that behave like nodes in a tree, but which are not, into a

real tree structure. We call this process of API Transformation

Process (ATP).

Therefore:

“HappyTree API is a data structure API designed for the Java

programming language that consists of transforming linear

structures of Java Objects into a tree structure and allowing its

handling.”

What is the objective?
The HappyTree API provides interfaces to the API client for three

primaries and clear objectives:

1. Handle Java Objects as if they were nodes within trees, in

order to perform operations such as copying, cutting,

removing, creating, persisting or updating.

2. Transform linear data structures of Java Objects into trees

(API Transformation Process).

3. Create and manage multiple trees of these objects.

The first purpose represents the basic operations in the trees, when

the API client desires to change the state of the nodes (officially

called of Elements in the context of the API) in the trees, in order

to move, copy, remove, create and update those nodes.

The second purpose is suitable for situations in which the API client

needs to transform a collection of plain objects of which there is a

tree logical relation between them, but that they are not being

represented structurally as a tree. This process we called of API

Transformation Process.

The last one allows the API client to activate, deactivate or destroy

the trees.

When to use?

Let's say you work on a Java project for a company, preferably a

legacy project, on which the system was developed many years

ago. Then someone assigned you a ticket to adjust the system

menu. A sub menu item needs to be relocated to another menu

category. Therefore, you go to the database and find something

like:

MENU_ID MENU_LABEL MENU_PARENT_ID MENU_DESCRIPTION
105 Administration null
110 Control Panel 105 ...
302 Users null
321 My Profile 302 ...
322 Access Control 302 ...

The purpose of the ticket would be to relocate the "Access Control"

menu to stay within the "Administration" menu.

However, because it is a legacy project, the development team did

not take the necessary care, and when loading this structure from

the database to the respective Java Menu objects, the

development team did not physically treat this entire structure as

tree menus. Therefore, the object in question looks like this:

public class Menu {
 private Integer menuId;
 private String menuLabel;
 private Integer menuParentId;
 private String menuDescription;

 //An empty constructor.
 public Menu() {
 }

 //getters & setters
}

As each object of the class above represents a menu item, we do

not have here, in terms of Object- Oriented, a defined tree

structure, but rather a structure that came the way it is in the

database, that is, a relational/linear structure.

You end up discovering that you did not want this, because in

addition to the structure not being physically like a tree, probably

you will have some extra work to implement recursive methods and

other methods to perform operations for the nodes of the menu

tree.

Therefore, here would be a good circumstance to use the

HappyTree API.

The above structure would be transformed by the HappyTree API

(through the API Transformation Process) into:

public class Element<Menu> {
 private Object menuId;
 private Object menuParentId;

 private Collection<Element<Menu>> menuChildren;
 private Menu wrappedMenu;

 //Skeleton methods.
 public void addChild(Element<Menu> child);
 public void removeChild(Element<Menu> child);
 public void wrap(Menu menu);
 public Menu unwrap();

 //Other methods.
}

With the transformation performed, each Element object

encapsulates (wraps) its respective Menu object within itself and

each Element object is physically in a position in the tree, thus

representing a tree node.

In addition, each element can have several other elements within

it, such as children, and each child has other children, and so on,

recursively representing a complete tree.

After the tree is built, you can relocate the desired menu item using

the interfaces provided by the HappyTree API, without the need to

implement any additional code. See below, how to use.

How to use

Continuing the example above and as already mentioned, there is

no need to implement any additional code to relocate the desired

menu. Just add the following annotations to the Menu class:

@Tree
public class Menu {
 @Id
 private Integer menuId;
 private String menuLabel;
 @Parent
 private Integer menuParentId;

 private String menuDescription;

 //An empty constructor.
 public Menu() {
 }

 //getters & setters
}

@Tree

Indicates that the class object can be transformed, by the API

Transformation Process, into a tree node.

@Id

Unique and non-null identifier of the object to be transformed.

@Parent

Identifier of the parent object to which the current object will bind at

the transformation moment.

There are some conditions for the API Transformation Process

to be successful:

 The three annotations must be present in the class to be

transformed;

 The value of the attribute annotated by @ID must be

mandatory, while the attribute annotated by @Parent can be

null, or point to a non-existent parent. This @Parent attribute

is responsible for moving or not the object to the root level of

the tree, if it is null or not found.

 The attribute annotated by @ID must be of the same type as

the attribute annotated by @Parent.

From this point on, after just putting these annotations to the class

attributes, you already have everything to transform your linear

structure into a real tree structure.

Your First Code Snippet

To initialize the menus tree in the example above, and any other

type of tree, we use a code snippet that is quite common and will

always be used at any tree initialization:

Collection<Menu> menus = myObject.getMenuFromDatabase();
TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();
transaction.initializeSession("MyFirstHappyTree", menus);

From the code above, your tree is already built and has a session

identifier named "myFirstHappyTree". Every tree (session)

initialized has a unique and non-null session identifier. We will talk

about these concepts in more detail later.

However, it remains to fulfill the objective of the ticket assigned to

you. Although you already have the tree built, it remains to

reallocate the "Access Control" menu from "Users" to

"Administration".

As we already know, through the database in the example above,

the menu item with the label "Access Control" has the @ID 322 and

the menu item "Administration" has the @ID 105. With that in mind,

just do the following:

Element<Menu> administration = manager.getElementById(105);
Element<Menu> accessControl = manager.getElementById(322);
manager.cut(accessControl, administration);

Alternatively:

Element<Menu> accessControl = manager.cut(322, 105);

Okay, now you have solved the ticket!

Requirement

HappyTree API is an API that strives for simplicity and that acts in

a very specific way on Java Object Model, when there is a tree

behavior. Such simplicity is also reflected in the requirements.

There is only one basic requirement:

 Java 8;

In the next chapter, you will see the HappyTree API architectural

specification. You will understand which are the functional

interfaces and what they are for, the structure and behavior of the

API as well as the lifecycle and states of the objects, and to

conclude, the API Transformation Process.

Architectural Specification

Although until now you are able to use the HappyTree API with

some ease, it is recommended that you read this chapter to have

a complete understanding of all aspects of the HappyTree API.

We will adopt a Top-Down approach here, starting with the

exposed interfaces and its functionalities, and then we will explain

the structural and behavioral composition of the API, in order to

conclude with the technical details. We promise it will not be tiring

reading!

Functional Architecture

The HappyTree API provides for the API client four interfaces with

different responsibilities.

Interfaces Scope
 TreeSession

Responsible for storing the trees. Each session has a

unique, non-null identifier and stores a collection of

Element interface (in a hierarchical tree structure),

representing the tree itself. Only it is possible to run the

most of operations related to elements/trees if the

current tree session associated to the transaction is

active.

 TreeTransaction

Object responsible for managing the sessions. This

object can create, activate, deactivate and destroy

stored sessions. It is through this object that the

TreeManager interface performs operations on trees.

For this, it is necessary that the transaction is pointing to

a session and that this session be active.

The transaction acts as a kind of selector, allowing the

TreeManager object to perform operations on one

session at a time.

Therefore, when the API client performs an operation like

cut() as in the example above, it is doing this operation

on a predetermined tree that was chosen through a

transaction.

There are two ways to indicate to the transaction a tree

that this object should reference. The first is through the

initializeSession() that automatically, after the

initialization (creation) of the session, the transaction

already references the created session. The second is

through sessionCheckout(), in which the API client

chooses a tree in memory that must be referenced by

the transaction.

 Element

An element represents a node in a tree. It can have none

or many other elements within it, such as children, and

each child, likewise, can have several other elements,

and so on.

Beyond this, each element has a unique and non-null

@Id and a nullable @Parent, representing the parent

identifier which the element references. If the parent is a

not found element or even null, then the element will stay

in the root level of the tree.

In the API Transformation Process, it is this object that

will encapsulate the annotated object that was used at

the initialization of the session, placing the objects of the

linear structure, which were transformed, in the correct

physical location within the tree, contained within their

respective elements (tree nodes).

This object has a defined lifecycle, which will be

explained later.

 TreeManager

Object responsible for performing operations on trees. It

is through TreeManager that you will be able to create,

cut, copy, remove, update and persist elements over a

given tree session that was selected through a

transaction.

All TreeManager operations need a transaction

referencing an active session, otherwise a

TreeException will be thrown.

Therefore, all of those interfaces are related as follows:

TreeManager (invokes) -> TreeTransaction (to store) -> TreeSession (that contains) -> Element

In addition to those provided interfaces to the API client, other

classes are also exposed to be used:

 HappyTree

Final class and not instantiable. This class is the one that

gives the initial start to use the HappyTree API. As

shown at the beginning of this documentation, it is only

intended to return instances of TreeManager:

TreeManager manager = HappyTree.createTreeManager();

 TreeException

Exception class of the HappyTree API. In any

specification violation, this exception will be thrown.

 Annotations

The annotations @Tree, @Id and @Parent were

exemplified at the beginning of this documentation.

Should only be used within the context of the API

Transformation Process.

All of those classes and interfaces are the ones that are exposed

and the API client can use.

Interface Methods
To see the list of interface methods, just enter this link.

Application Architecture

Going down a little more in the Top-Down approach, now we will

see a little more detail in the general architecture of the HappyTree

API, but still maintaining a certain level of abstraction.

https://happytreeapi.vercel.app/javadoc/index.html

General Architecture

In the image below, the general architecture of the HappyTree API

is represented as well as the class packages and their

responsibilities.

The HappyTree API has some packages, but two of them can be

considered as "main":

 com.madzera.happytree

This package is the package from which the API client

will be able to view and use the exposed interfaces. Also,

this package only contains interfaces that must be

exposed as functionalities for the API client. Therefore,

everything contained here must be public.

The package contains the interfaces already talked

about here:

 TreeTransaction;

 TreeManager;

 Element;

 TreeSession.

 com.madzera.happytree.core

This package is where the actual implementation of

those exposed interfaces are, in addition to

implementing the Element object’s lifecycle (it will be

seen later) and the API Transformation Process

phases. It contains several classes that assist in

implementation, such as factories, Utils & Helpers,

validators, message repositories, etc, but for internal use

only.

Because it is internal, this package should not be visible

to the API client, with the exception of the HappyTree

class, which is the class responsible for the API's entry

point.

Below are the other packages:

 com.madzera.happytree.annotation

This package is responsible for only storing the

annotations that will be used in the API Transformation

Process. These annotations will determine the identifier,

the parent and the object's own class (the annotated

class) that will be transformed into an Element object by

the HappyTree API, representing a node of the tree. This

package is public and the annotations are, as already

mentioned:

 @Tree;

 @Id;

 @Parent.

 com.madzera.happytree.exception

This package will keep the TreeException class, threw

in case an error occurs. This package is public, as the

API client needs to handle this exception.

Structural Composition

An object of Element type represents a node in a tree. A tree can

only exist within a previously initialized session (TreeSession). To

initialize a session, the API client needs to invoke an object that

represents a session transaction, this object is known as

TreeTransaction. However, the transaction can only be recovered

from within a manager, which implements the TreeManager

interface, provided to the API client.

We conclude that: every Element is inserted into a TreeSession,

which in turn is manipulated within a TreeTransaction and finally

recovered by a TreeManager.

Behavioral Composition

The HappyTree API allows the API client to use it under two

provided main entities: the manipulation of elements in a tree, and

the same manipulation of these trees linked to sessions. Each tree

has its respective owner, and no other owner can handle other

trees than his own. Therefore, for this protection, the session

mechanism was created, where each element has a unique

identifier in the tree, as well as a session has its own identifier within

all opened sessions in the transaction.

Therefore, the relationship between Element and TreeSession

objects is intrinsic. The other two types of objects, TreeManager

and TreeTransaction, available to the API client, are precisely the

Element and TreeSession manipulation objects respectively.

However, it is worth noting that the current session must always be

active in order to handle the tree. This is the first check that the

HappyTree API does. You can have several active sessions, but

the TreeTransaction object can only work with one session at a

time, which is the session chosen by the API client by invoking the

TreeTransaction.sessionCheckout() method.

Thus, we see that there are two main entities (Element and

TreeSession) and two entities (TreeManager and

TreeTransaction) responsible for handling the main entities.

Technical Architecture

Now that you know the main interfaces and how they relate, and

also how objects of those interfaces are structured and their

behavior, we can now dive into the more technical details of the

HappyTree API.

We will start to explain the contexts, and then we will talk about the

phases of using the API. With these two concepts in mind, we will

see the lifecycle of Element objects.

All of this initial explanation is very important for you to understand

why you sometimes got an exception threw. This whole lifecycle

concept of the Element within the tree is the fundamental basis for

using the HappyTree API fully.

After that, we will see the states of the session, the specifications

and necessary validations that HappyTree API does.

To conclude, we will explain in theory, how the API

Transformation Process works, converting a list of linear objects

in objects assembled like a real tree.

Contexts
The HappyTree API is intended to manage object trees, however,

it has no responsibility for the changes you make to these objects,

which represent the nodes in the tree.

Consider the code below:

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

//True or False?
manager.containsElement(programFiles, winamp);

Is the return of the last line true or false?

Does the “programFiles” directory really have the “winamp”

directory inside it, as a child, in the “DirectoryTree” session?

The answer is no. Although the "programFiles" object actually has

the "winamp" object inside it, in the "DirectoryTree" session this

change is not synchronized yet, because as previously said, the

HappyTree API has no responsibility for the changes you apply to

tree objects.

What actually happens when you get an element from an already

assembled tree is that you actually receive a clone of the element.

The real instance of the element is never returned, just clones of

elements. Since the returned element can have several children

inside, they are all "mirrored", thus, they are identical copies of the

elements that are within the tree session.

Therefore, there are two ways to complete the code above in order

to move the "winamp" directory into "programFiles" inside of the

“DirectoryTree” session:

manager.updateElement(programFiles);

Or just invoke the method below without applying changes directly

to the element:

manager.cut(winamp, programFiles);

Note: when a tree change occurs through the TreeManager

interface, it is not necessary to update the element.

Every change via TreeManager is automatically synchronized

to the tree.

With all that has been said so far, it is clear that there are two

contexts. Understands this as perspectives: the API client's

perspective and the session (the tree) perspective. So, in relation

to the example above, we have the following:

Before synchronization.

After synchronization (by update or cut() method).

Be careful with object references

After synchronization, in the example above, you have to ensure

that your variables "programFiles" and “winamp” have their

references updated, so as not to reference the previous state to the

synchronization.

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);
manager.updateElement(programFiles);

/*
 * Still false at this point, despite the update. It is necessary to update the
 * reference of the programFiles and winamp variables.
 */
manager.containsElement(programFiles, winamp);
winamp = manager.getElementById(winampId);
programFiles = manager.getElementById(programFilesId);

//Now it is true.
manager.containsElement(programFiles, winamp);

The API client also needs to take special care in the immediate

return of methods.

TreeManager manager = HappyTree.createTreeManager();
TreeTransaction transaction = manager.getTransaction();

Collection<Directory> directories = someObject.getDirectoryTree();

transaction.initializeSession("DirectoryTree", directories);

Element<Directory> winamp = manager.getElementById(winampId);
Element<Directory> programFiles = manager.getElementById(programFilesId);

programFiles.addChild(winamp);

manager.updateElement(programFiles);

/*
 * It is false because it is invoking the containsElement(Object, Object)
 * method instead of containsElement(Element, Element).
 */
manager.containsElement(manager.getElementById(programFilesId),
 manager.getElementById(winampId));

In the code example above, the API client intended to invoke the

version of the cut(Element, Element) method but ended up

invoking cut(Object, Object). This is another version of the cut()

method that takes Object as a parameter, instead of Element. This

Object represents the @Id of the element.

This is because of the immediate return of the getElementById()

method within the containsElement() method. As the HappyTree

API works with Java reflection, in runtime the JVM associates the

return directly with Object.

Therefore, it is recommended to assign the return of the method to

a variable in order to use it, instead of using immediate return.

Phases
Now that you know very well about the two contexts of the

HappyTree API, it is much easier to recognize the execution

phases. The following description is equivalent to either a new tree

created from scratch or a tree built through the API

Transformation Process, because these phases are measured

after the session initializes.

There are three stages of execution. These stages have no direct

implication of the API usage, thus serving as a purely informative

feature, to facilitate the understanding of the lifecycle of the

Element objects within the sessions.

Phase Method Description

Initial Phase getElementById() Occurs when the API client get the element. The
returned element has not yet undergone any
changes by the API client.

Usage Phase createElement(),
addChild(), setId(),
removeChild(),
wrap(), etc.

Occurs when the API client applies a change,
however small, to the state of the element that
is returned from the previous phase.

Synchronization Phase persistElement(),
updateElement()

For the changes in the previous phase to take
effect, it is necessary to synchronize them with
the tree session, using the indicated methods.
After that, both contexts are matched.

Element Lifecycle
The concepts of contexts and phases here were just for you had

better understand the life cycle of the elements in the HappyTree

API. We now present the lifecycle states as well as their

descriptions.

When you get an element from a tree session, you have in your

hands what we usually call of an attached element to the tree. An

attached (ATTACHED) element represents exactly the faithful

copy of the element in relation to the session context, that is, you

now, in your context, in the context of the API client, have an

element that is a mirror of what is in the tree session.

When you decide to want to change something in that element that

you got, it means that a copy of that element, which was identical

to the element of the session context, will no longer be. To this

state, we call it detached (DETACHED), because the element is

no longer synchronized with the tree.

Finally, you decide that this element is no longer useful to the

current tree, so you decide to remove it. When removing an

element from the tree, in the context of the tree session, we say

that the element in question not exists (NOT_EXISTED).

Therefore, the cycle is repeated, from the moment of creating a

new element or capturing an existing one, until its possible

removal.

Note: when creating an element from scratch, you are creating

an element that does not yet belong to the tree, so its state

assumes the value of nonexistent (NOT_EXISTED).

Session States
The object of the TreeSession interface is intended to represent a

tree of elements. When we say something related to the session or

the tree, both concepts have the same meaning, since a session

object has the entire structure of the tree within it.

As mentioned at the beginning of this documentation, the

transaction can only work with one session at a time. If you want to

select sessions, just call the sessionCheckout() method provided

by the TreeTransaction interface. However, the API client has to

make sure that the session he wants to handle is active, otherwise,

a TreeException will be threw, and this validation is done in almost

all methods of the TreeManager object.

Basically, there are only three possible states of a session:

 Activated

The session exists in memory and it is enabled to be

handled.

 Deactivated

The session exists in memory and it is not enabled to be

handled. You cannot handle the tree, through the

TreeManager methods, with a deactivated session.

 Destroyed

The session no longer exists in memory. Here, the

reference of the session object is null.

Specifications & Validations
The HappyTree API performs a series of validations to avoid

inconsistencies that violate the specifications. The validations

occur in two situations: the first would be in the API

Transformation Process and the other would be when invoking

the methods of the TreeManager interface after the tree was built.

The HappyTree API can throw exceptions represented by two

types of objects: TreeException and IllegalArgumentException.

The first one represents an exception class specific to the

HappyTree API, and it is threw when an API specification is

violated.

The last one is a runtime exception, native to Java. In the context

of the HappyTree API, this exception is threw when the input

variables are null.

API Transformation Process (before the tree built)

Specification Message Type

The input parameters
cannot be null.

Invalid null/empty argument(s). IllegalArgumentException

The session identifier must
be unique.

Already existing initialized session. TreeException

The class of the object to
be transformed must be
annotated with @Tree.

There is no @TREE associated. TreeException

The Id of the object to be
transformed must be
annotated with @Id.

There is no @ID associated. TreeException

The parent Id of the object
to be transformed must be
annotated with @Parent.

There is no @PARENT associated. TreeException

The class of the object to
be transformed must have
an empty constructor,
getters, and setters.

Impossible to transform input
object. Ensure the existence of
getters and setters.

TreeException

The @Id attribute value
cannot be null.

Invalid null/empty argument(s). IllegalArgumentException

The value of the @Id
attribute cannot be
duplicated in relation to
another object within the
same tree session.

Duplicated ID. TreeException

The @Id and @Parent
attributes must be of the
same type.

Mismatch type ID error. TreeException

TreeManager Methods Operations (after the tree built)

Specification Message Type

The input parameters
cannot be null.

Invalid null/empty argument(s). IllegalArgumentException

When invoking an
operation that handle
directly elements in the
tree, the transaction must
reference a defined
session.

No defined session. TreeException

When invoking an
operation that handle
directly elements in the
tree, the transaction must
reference an active
session.

No active session. TreeException

When handling an
element, make sure that
the associated transaction
references the correct
session to which the
element belongs.

Element not defined in this session. TreeException

By copying or moving an
element from one tree to
another, both trees must
have the same type of
object that the Element
wraps.

Mismatch type error. Incompatible
parameterized type tree.

TreeException

It is not possible to
perform operations on
elements that represent
the root of a tree.

No possible to handle the root of
the tree. Consider using a
transaction to clone trees.

TreeException

Operations that change
the state of the tree can
only be performed
depending on the lifecycle
of the elements involved
in these operations (See
the state diagram above,
previous chapter).

 No possible to
copy/cut/remove elements.
Invalid lifecycle state;

 No possible to persist the
element. Invalid lifecycle
state;

 No possible to update the
element. Invalid lifecycle
state.

TreeException

Duplicate ID elements are
not allowed within the
same tree.

Duplicated ID. TreeException

When a session is
initialized, the root
element @Id of the tree is
the same as the identifier
of the initialized session
itself.

API Transformation Process (ATP)
As mentioned initially, this mechanism is responsible for

transforming a linear structure of Java model objects, which are

originally related through a tree behavior, but which they are not

structurally represented as one.

The definition of "having a tree behavior even though it is not"

means having a collection of objects that logically relate their self,

which one object is child of another one, but that structurally these

objects are not contained within each other.

Therefore, this mechanism transforms this linear structure in such

a way that objects are structurally placed inside another. In the end,

a resulting object may have a list of children contained within it,

where each child may have another list of children, and so on.

We saw that there are two ways to initialize a session, one of which

is responsible for initializing a session by passing a collection of

objects to be transformed, thus triggering the API Transformation

Process. Let’s review then.

Creating a new tree from scratch

Here, there is no ATP. The API client just initialize a standard new

tree session for handling after. The result of this is a tree containing

only the root element.

The version of the method to initialize a standard tree session is

Transaction.initializeSession(String, Class), where String is

the session identifier (unique and not null) and Class is the

parameterized type of the tree that will be used by the Element

interface to wrap an object that would represent a node in the tree.

Creating a new tree using the ATP

The API client has a structure that would represents a tree, but it is

designed in a linear form like:

Then, this structure will be transformed into:

The version of the method to initialize a tree session through ATP

is Transaction.initializeSession(String, Collection) where

String is the session identifier (unique and not null) and Collection

represents the list of object to be transformed by the ATP.

This collection contains objects that their class is annotated by

@Tree, @Id and @Parent and consequently represents the

parameterized type of the tree. During the transformation process

(ATP lifecycle), these objects will be automatically wrapped within

their respective element in the current tree session, thus

representing nodes in the tree. To unwrap the respective object

from an element, simply invoke Element.unwrap().

ATP Lifecycle

The API Transformation Process has an inner-implementation of

a lifecycle, which consists of distinct phases that aim to transform

the linear structure of objects, which would represent a tree data

structure, into a real tree.

Its lifecycle has no impact at the functional level, when the API

client makes use of it. The explanation contained here is purely

informative, serving only for users to better understand the process

of assembling a tree from a legacy structure of linear objects of

which they would represent a tree.

As input, ATP receives the list of objects that will be transformed

into a tree through five distinct and consecutive phases:

1. Pre-Validation

It performs validations in order to verify if the received

input is compatible with the adopted specifications. It can

throw IllegalArgumentException if the list of objects to

be transformed is empty or null and TreeException in

the other specifications.

The following validations are:

 Verifies that the list of objects to be transformed is

not null or empty;

 Verifies whether there is an existing session with

the same identifier;

 Verifies that the class of the objects to be

transformed is annotated with @Tree;

 Verifies that the class of the objects to be

transformed is annotated with @Id;

 Verifies that the class of the objects to be

transformed is annotated with @Parent;

 Verifies that the @Id and @Parent attributes have

the same type;

 Verifies whether there is an object with null @Id

value;

 Checks for duplicate IDs;

 Verifies that the class of the objects to be

transformed has getters & setters.

2. Extraction

If the input represented by the list of objects to be

transformed passed all validations from the previous

phase, then the HappyTree API takes them and extracts

them in order to separate them from their respective

parents. Therefore, as a product for the next phase,

there will be the objects and their respective parents

separated into two blocks.

3. Initialization

In this phase, the HappyTree API instantiates an object

of type Element for each source object used as input

and passes the respective @Id and @Parent attributes

of the source object to that element. In addition, the

source object itself is automatically wrapped into that

element, thus making the source object liable to be a tree

node, since the element naturally represents a node in

the context of the HappyTree API.

After the tree is built, to retrieve the source object just

invoke the Element.unwrap() method.

As a product of this phase, we already have the

instantiated elements with all the information from the

source objects.

4. Binding

After obtaining the list of resulting elements from the

previous phase, the HappyTree API will now bind each

element to its respective parent, through the block of

separated parent objects in the Extraction phase.

Therefore, it is at this phase that the tree is actually

assembled. Thus, for each node in the tree we have a

represented element object, where each element has:

 The @Id attribute value;

 The @parent attribute value;

 The wrappedObject corresponding the respective

source object transformed in this process;

 The collection of children, corresponding to other

elements in which they are children of this;

 The tree session, which this element belongs.

5. Post-Validation

This phase confirms that the provided input corresponds

exactly to the generated output (the tree itself). If there is

any inconsistency, a TreeException is threw,

immediately aborting the process and rolling back the

session.

